第417章 36--田间的杂草 野草疯长!
第417章 36--田间的杂草 野草疯长! (第2/3页)
美也一直吸引着少数几个有独立想法的研究者,其中就包括Furey,这个在4年前拜访过Günaydin的加拿大研究生。那时Furey在黑板上潦草地写下一串奇异的符号,试图向 Günaydin 解释她将他的工作从强相互作用拓展到了电磁相互作用。
现如今Furey已经39岁了,她还没能将标准模型中的粒子和相互作用都用八元数来表达出来,也还没能触及到引力这个话题。她强调数学上的可能有很多种,很多专家都认为,找到能成功合并八元数和其他可除代数的方法还太早。
最复杂的数
要说明什么是八元数,要从我们熟悉的实数开始——就是那些可以在数轴上找到的数,例如1、π、-83.777。实数可以通过特定的方式凑成一对,组成复数。关于复数的研究开始于16世纪的意大利,复数和二维坐标平面类似,加法、减法、乘法和除法就像是位置在平面上平移和旋转。将复数以一定的方式配对,可以形成四维的四元数,它是在1843年由爱尔兰数学家哈密顿发现的。哈密顿的律师朋友John Graves随之证明了成对组合的四元数也组成八元数:这种数可以定义八维抽象空间的坐标。
之后就不可能构建更复杂的数了。1898年完成的证明说明,实数、复数、四元数和八元数是仅有的几种可被加减乘除的数字形式。这些“可除代数”中的前三个是20世纪物理学的数学基础,实数一直都存在于经典物理中,复数提供了量子物理的数学基础,四元数则是爱因斯坦狭义相对论的基础。这样的联系让很多研究人员去思考如何理解最后一个可除代数。八元数中可能蕴含着宇宙的秘密吗?
当你从实数到复数,再到四元数、八元数把维度逐步翻倍时,Furey解释道,“每一次翻倍,你都会失去一些性质。”比如,实数可以从小到大排列,“而复数分布的平面上,根本没有这样的概念。”接着,四元数没有交换律;对于四元数来说,a × b不等于b × a。这其实也很常见,因为将更高维度的数相乘会包含旋转,当你在高于两维的空间交换旋转的次序时,你最终得到的位置是不同的。到了八元数,结合律也将失效,也就是说(a × b)× c不等于a ×(b × c)。“数学家们不喜欢不满足结合律的东西,”加利福尼亚
(本章未完,请点击下一页继续阅读)